

Efficient Graph-Based Image Segmentation

Pedro. F. Felzenszwalb, and Daniel P. Hutenlocher

Intl. Journal of Computer Vision (IJCV), 2004

Speaker: Shih-Shinh Huang

August 17, 2018

Outline

- Introduction
- Graph-Based Formulation
- Partition Strategy
- Segmentation Algorithm

- About Segmentation
 - partition an image into a set of disjoint regions.
 - facilitate the process of addressing a wide range of vision problems.
 - Intermediate-Level: motion estimation
 - High-Level: image indexing or object detection

Observation

- It is not adequate to assume that regions have nearly constant or slowly varying intensities.
- The determination of boundary between regions cannot only use local decision criteria.

- Objective
 - develop image segmentation approach that
 - captures perceptually important regions that reflect global aspect.
 - runs efficiently in time nearly linear in the number of image pixels.

- Idea: adaptive criteria
 - There is a boundary between two adjacent regions C_i and C_j

Between
$$(C_i, C_j)$$
 > Within (C_i) or

Between
$$(C_i, C_j) > Within(C_j)$$

- Between: difference across two regions
- Within: difference (or variation) within a region

Graph-Based Formulation

- Graph Representation
 - Let G = (V, E) be an undirected graph
 - $v_i \in V$: set of vertices (pixels) to be segmented
 - $e = (v_i, v_j) \in E$: set of edges corresponding to pairs of neighboring vertices (pixels)
 - Each edge $e = (v_i, v_j) \in E$ has a weight $w(v_i, v_j)$ denoting the dissimilarity between v_i and v_j

Graph-Based Formulation

Graph Representation

$$w(.) = |12 - 13| = 1$$

$$w(.) = |12 - 40| = 28$$

E: set of edges

N₄ neighborhood

N₈ neighborhood Nkfustco

Graph-Based Formulation

- Segmentation Formulation
 - partition the vertex set V of a graph into components C_1, C_2, \dots

- Edges between two vertices in the same component should have lower weights
- Edges between vertices across different components should have higher weights

- Internal (Within) Difference Int(.)
 - Definition: largest weight in the minimum spanning tree (MST) of a component $C \subseteq V$

$$Int(C) = \max_{e \in MST(C,E)} w(e)$$

• Int(C) = 0 if C has only one pixel

- Component (Between) Difference Dif(.)
 - Definition: minimum weight of edges connecting two components $C_i \subseteq V$, $C_j \subseteq V$

$$Dif(C_j, C_j) = \min_{v_i \in C_i, v_j \in C_j, (v_i, v_j) \in E} w(v_i, v_j)$$

• $Dif(C_i, C_j) = \infty$ if there is no edge connecting C_i and C_j

Internal Difference

Component Difference

$$Int(C_1) = \max_{e \in MST(C,E)} \{2,0\} = 2$$

$$Int(C_1) = \max_{e \in MST(C,E)} 2 2001(2,1) = 2$$
 $Dif(C_2, C_3) = \min_{v_i \in c_2, v_j \in c_3, (v_i, v_j) \in E} 55$

- Boundary Predicate
 - evaluate if there is evidence for a boundary between a pair of adjacent components.

$$D(C_i, C_j) = \begin{cases} true \\ false \end{cases} Dif(C_i, C_j) > Int(C_i) \text{ or} \\ Dif(C_i, C_j) > Int(C_j) \\ \text{otherwise} \end{cases}$$

$$D(C_i, C_j) = \begin{cases} true \\ false \end{cases}$$

$$Dif(C_i, C_j) > min\{Int(C_i), Int(C_j)\}$$

otherwise

- Boundary Predicate
 - This predicate is not a good estimate of local property
 - makes the algorithm tend to have components with small size.
 - Extreme Case: Int(C) = 0 if |C| = 1

- Boundary Predicate
 - add a threshold function $\tau(.)$ based on component size, that is, $\tau(C) = \frac{k}{|C|}$

Rule: $Dif(C_i, C_j) > min\{Int(C_i), Int(C_j)\}$

- General Description
 - Input:
 - a graph G = (V, E) with n vertices and m edges
 - a constant parameter *k*
 - Output:
 - a partition of *V* into components $S = (C_1, C_2, ..., C_r)$

- Initialization
 - consider each vertex as a single-element component $S = (C_1, C_2, ... C_n)$
 - initialize each component with $Int(C_i) = 0$

- Initialization
 - sort all edges $e \in E$ into $(e_1, e_2, ... e_m)$ according to their weights in a non-decreasing order

- Iteration Step (q = 1, 2, ..., m)
 - Step 1: take the edge $e_q = (v_i, v_j)$, where $v_i \in C_i$ and $v_j \in C_j$
 - Step 2: if $C_i \neq C_j$
 - Step 2.1: if boundary predicate $D(C_i, C_i)$ =false. merge the components C_i and C_i
 - Step 2.2: if C_i and C_j are merged, set $Int(C_i \cup C_j)=w(e_q)$
 - Step 3: $q \leftarrow q + 1$ and go to Step 1

• Iteration Step (Merge Condition)

$$D(C_i, C_j) = false \ \mathbf{if} \ Dif(C_i, C_j) \leq \min\{Int(C_i) + \frac{k}{|C_i|}, Int(C_j) + \frac{k}{|C_j|}\}$$

$$D(C_i, C_j) = false \text{ if } - \begin{cases} Dif(C_i, C_j) \leq Int(C_i) + \frac{k}{\tau(C_i)} \\ Dif(C_i, C_j) \leq Int(C_j) + \frac{k}{\tau(C_j)} \end{cases}$$

$$D(C_i, C_j) = false \text{ if } -\begin{bmatrix} w(e_q) \leq Int(C_i) + \frac{k}{\tau(C_i)} \\ w(e_q) \leq Int(C_j) + \frac{k}{\tau(C_j)} \end{bmatrix} \text{ merge condition}$$

• Tiny Example (k = 100)

$$\int_{w(e_q) \le Int(C_i) + \frac{k}{\tau(C_i)}} w(e_q) \le Int(C_j) + \frac{k}{\tau(C_j)}$$

$$2 \le 2 + \frac{100}{4} = 27$$

$$2 \le 0 + \frac{100}{2} = 50$$

$$2 \le 2 + \frac{100}{6} = 18.67$$

$$2 \le 0 + \frac{100}{1} = 100$$

• Tiny Example (k = 100)

 $\begin{cases} w(e_q) \leq Int(C_i) + \frac{k}{\tau(C_i)} \\ w(e_q) \leq Int(C_j) + \frac{k}{\tau(C_i)} \end{cases}$

$$78 \quad 24 > 2 + \frac{100}{7} = 16.29$$

$$24 \le 5 + \frac{100}{2} = 55$$

